12 research outputs found

    Hierarchical Honeycomb-structured Electret/Triboelectric Nanogenerator for Biomechanical and Morphing Wing Energy Harvesting

    Get PDF
    Flexible, compact, lightweight and sustainable power sources are indispensable for modern wearable and personal electronics and small-unmanned aerial vehicles (UAVs). Hierarchical honeycomb has the unique merits of compact mesostructures, excellent energy absorption properties and considerable weight to strength ratios. Herein, a honeycomb-inspired triboelectric nanogenerator (h-TENG) is proposed for biomechanical and UAV morphing wing energy harvesting based on contact triboelectrification wavy surface of cellular honeycomb structure. The wavy surface comprises a multilayered thin film structure (combining polyethylene terephthalate, silver nanowires and fluorinated ethylene propylene) fabricated through high-temperature thermoplastic molding and wafer-level bonding process. With superior synchronization of large amounts of energy generation units with honeycomb cells, the manufactured h-TENG prototype produces the maximum instantaneous open-circuit voltage, short-circuit current and output power of 1207 V, 68.5 μA and 12.4 mW, respectively, corresponding to a remarkable peak power density of 0.275 mW/cm3 (or 2.48 mW/g) under hand-pressing excitations. Attributed to the excellent elastic property of self-rebounding honeycomb structure, the flexible and transparent h-TENG can be easily pressed, bent, and integrated into shoes for real-time insole plantar pressure mapping. The lightweight and compact h-TENG is further installed into a morphing wing of small UAVs for efficiently converting the flapping energy of ailerons into electricity for the first time. This research demonstrates this new conceptualizing single h-TENG device's versatility and viability for broad-range real-world application scenarios

    Fundamental Storage-Latency Tradeoff in Cache-Aided MIMO Interference Networks

    No full text

    The Efficient Energy Collection of an Autoregulatory Driving Arm Harvester in a Breeze Environment

    No full text
    Breezes are a common source of renewable energy in the natural world. However, effectively harnessing breeze energy is challenging with conventional wind generators. These generators have a relatively high start-up wind speed requirement due to their large and steady rotational inertia. This study puts forth the idea of an autoregulatory driving arm (ADA), utilizing a stretchable arm for every wind cup and an elastic thread to provide adjustable rotational inertia and a low start-up speed. The self-adjustable rotational inertia of the harvester is achieved through coordinated interaction between the centrifugal and elastic forces. As the wind speed varies, the arm length of the wind cup automatically adjusts, thereby altering the rotational inertia of the harvester. This self-adjustment mechanism allows the harvester to optimize its performance and adapt to different wind conditions. By implementing the suggested ADA harvester, a low start-up speed of 1 m/s is achieved due to the small rotational inertia in its idle state. With the escalation of wind speed, the amplified centrifugal force leads to the elongation of the driving arms. When compared to a comparable harvester with a constant driving arm (CDA), the ADA harvester can generate more power thanks to this stretching effect. Additionally, the ADA harvester can operate for a longer time than the CDA harvester even after the wind has stopped. This extended operation time enables the ADA harvester to serve as a renewable power source for sensors and other devices in natural breeze environments. By efficiently utilizing and storing energy, the ADA harvester ensures a continuous and reliable power supply in such settings

    The Electronic Properties of O-Doped Pure and Sulfur Vacancy-Defect Monolayer WS2: A First-Principles Study

    No full text
    Based on the density functional theory (DFT), the electronic properties of O-doped pure and sulfur vacancy-defect monolayer WS2 are investigated by using the first-principles method. For the O-doped pure monolayer WS2, four sizes (2 × 2 × 1, 3 × 3 × 1, 4 × 4 × 1 and 5 × 5 × 1) of supercell are discussed to probe the effects of O doping concentration on the electronic structure. For the 2 × 2 × 1 supercell with 12.5% O doping concentration, the band gap of O-doped pure WS2 is reduced by 8.9% displaying an indirect band gap. The band gaps in 3 × 3 × 1 and 4 × 4 × 1 supercells are both opened to some extent, respectively, for 5.55% and 3.13% O doping concentrations, while the band gap in 5 × 5 × 1 supercell with 2.0% O doping concentration is quite close to that of the pure monolayer WS2. Then, two typical point defects, including sulfur single-vacancy (VS) and sulfur divacancy (V2S), are introduced to probe the influences of O doping on the electronic properties of WS2 monolayers. The observations from DFT calculations show that O doping can broaden the band gap of monolayer WS2 with VS defect to a certain degree, but weaken the band gap of monolayer WS2 with V2S defect. Doping O element into either pure or sulfur vacancy-defect monolayer WS2 cannot change their band gaps significantly, however, it still can be regarded as a potential method to slightly tune the electronic properties of monolayer WS2

    Preparation Technology of Stretchable Electrode Based on Laser Cutting

    No full text
    Wearable electronics have showed their profound impact in military, sports, medical and other fields, but their large-scale applications are still limited due to high manufacturing costs. As an advanced micro-fabrication process, laser processing technology has the advantages of high speed, high flexibility, strong controllability, environmental protection and non-contact in preparing micro-nano structures of wearable electronics. In this paper, a 355 nm ultraviolet laser was used to pattern the copper foil pasted on the flexible substrate, and the interconnection electrodes and wires were constructed. A processing method of multi-parallel line laser cutting and high-speed laser scanning is proposed to separate and assist in peeling off excess copper foil. The process parameters are optimized. A stretchable 3 × 3 light-emitting diode (LED) array was prepared and its performance was tested. The results showed that the LED array can work normally under the conditions of folding, bending and stretching, and the stretch rate can reach more than 50%. A stretchable temperature measurement circuit that can be attached to a curved surface was further fabricated, which proves the feasibility of this process in the fabrication of small-scale flexible wearable electronic devices. Requiring no wet etching or masking process, the proposed process is an efficient, simple and low-cost method for the fabrication of stretchable circuits

    Preparation Technology of Stretchable Electrode Based on Laser Cutting

    No full text
    Wearable electronics have showed their profound impact in military, sports, medical and other fields, but their large-scale applications are still limited due to high manufacturing costs. As an advanced micro-fabrication process, laser processing technology has the advantages of high speed, high flexibility, strong controllability, environmental protection and non-contact in preparing micro-nano structures of wearable electronics. In this paper, a 355 nm ultraviolet laser was used to pattern the copper foil pasted on the flexible substrate, and the interconnection electrodes and wires were constructed. A processing method of multi-parallel line laser cutting and high-speed laser scanning is proposed to separate and assist in peeling off excess copper foil. The process parameters are optimized. A stretchable 3 × 3 light-emitting diode (LED) array was prepared and its performance was tested. The results showed that the LED array can work normally under the conditions of folding, bending and stretching, and the stretch rate can reach more than 50%. A stretchable temperature measurement circuit that can be attached to a curved surface was further fabricated, which proves the feasibility of this process in the fabrication of small-scale flexible wearable electronic devices. Requiring no wet etching or masking process, the proposed process is an efficient, simple and low-cost method for the fabrication of stretchable circuits

    Development of bipolar-charged electret rotatory power generator and application in self-powered intelligent thrust bearing

    No full text
    Inspired by an electromagnetic hydropower station that contains a reverse polarized magnet, we proposed a new design methodology of electret rotatory energy harvester (e-REH) with bipolar-charged electrets for boosting its output performance. A selectively localized corona discharging method is invented to have both positive and negative ultra-high-resolution charges implanted into a single electret thin film. A generalized theoretical model of bipolar-charged e-REHs with free-standing (Fe-REH) and sliding (Se-REH) operation modes is derived to evaluate their performance. The key features affecting their performance are the initial and parasitic capacitances with different connection schemes. Experimental results show that: the output power of the bipolar-charged e-REH is increased to 392.2% compared to those of the positive alone and negative alone configurations, which fully agree with those obtained from the theoretical model. For the first time, an intelligent thrust ball bearing is designed and fabricated with its self-powered and self-sensing capabilities based on the bipolar-charged e-REH. The rotation speed of the bearing is characterized by the response frequencies of the output voltage by Fast Fourier Transform instead of the output voltage amplitudes, exhibiting an ultra-high frequency sensitivity of 15.0 rpm/Hz and a good linearity R2 (coefficient of determination) of 99.9%. The developed e-REH has potential applications for high-precision and self-powered intelligent rotation-speed sensin
    corecore